
B.Tech. CSE

Semester III

Viswajyothi College of Engineering and Technology

CST205: OBJECT ORIENTED DESIGN

AND PROGRAMMING USING JAVA

Software development process

 Software design is a process to transform user requirements into

some suitable form, which helps the programmer in software

coding and implementation.

 Software development process consists of analysis, design,

implementation, testing, and refinement.

 At the first level the focus is on deciding which modules are

needed for the system on the basis of SRS (Software Requirement

Specification) and how the modules should be interconnected.

 Generally software development can be seen as a series of

transformations, where the output of one transformation becomes

the input of the subsequent transformation.

Transformation1(Analysis):

 Translates the user’s needs into system requirements and

responsibilities.

 The way the system is used can provide insight into the

user’s requirements.

 For example: in library management system, identify who

are the users and what are their requirements.

Transformation 2 (Design):

 Begins with a problem statement and ends with a detailed

design that can be transformed into a operational system.

 This transformation includes the bulk of the software

development activity, including the definition of how to

build the software, its development, and its testing.

 It also includes design descriptions, the programs and the

testing material.

Transformation 3(Implementation):

 Refines the detailed design into the system deployment that

will satisfy the user’s needs.

 With inputs from system design, the system is first developed

in small programs called units, which are integrated in the

next phase.

 Finally the software product is embedded within its

operational environment.

Object-Oriented Systems Development:

 The object oriented software development life

cycle(SDLC) consists of three macro processes:

 Object-oriented analysis

 Object-oriented design

 Object-oriented implementation

Object-Oriented Design

 The goal of object-oriented design (OOD) is to design the classes

identified during the analysis phase and the user interface.

 During this phase, additional objects and classes that supports

implementation of the requirements are defined.

Following are the guidelines to use in the object-oriented design:

 Reuse, rather than build, a new class. Know the existing classes.

 Design a large number of simple classes, rather than a small

number of complex classes.

 Design methods.

 Critique what have been proposed. If possible, go back and refine

the classes.

Unified Modeling Language(UML)

 Modeling is building a model for a software system prior to its

construction.

 It is used to describe a system at a high level of abstraction that

includes user requirements and specifications.

 UML is a industry-standard graphical language for specifying,
visualizing, constructing, and documenting the artifacts of
software systems

 The UML uses mostly graphical notations to express the OO
analysis and design of software projects.

 Simplifies the complex process of software design.

Why UML for Modeling?

 Use graphical notation to communicate more clearly than

natural language (imprecise) and code(too detailed).

 Help acquire an overall view of a system.

 UML is not dependent on any one language or technology.

 Encourage the use of object oriented concepts.

 Integrate best practices and methodologies and support higher

–level development concepts

➢UML is linked with object oriented design and analysis .

➢Diagrams in UML can be broadly classified as:

➢Structure Diagrams: Capture static aspects or structure of a

system

➢ Behavior Diagrams: Capture dynamic aspects or behavior of the

system .

11

Types of UML Diagrams

 Use Case Diagram

 Class Diagram

 Interaction Diagram

 Activity Diagram

 State chart Diagram

Use Case Diagram

 Depicts the functionality of the system.

 Used for describing a set of user scenarios and is mainly used

for capturing user requirements.

 Use cases represent specific flows of events in the system.

 A use-case diagram is a graph of actors, a set of use cases

enclosed by a system boundary, communication/associations

between the actors and the use cases, and generalization

among the use cases.

Use Case Diagram (core components)

Actors: A role that a user plays with respect to the system. i.e. they

are the entities that interact with the system. An actor may be people,

computer hardware, other systems, etc.

Use case: A set of scenarios that describes an interaction between a

user and a system. It is shown as an ellipse.

System boundary: rectangle diagram representing the boundary

between the actors and the system. The use cases of the system are

placed inside the system shape, while the actor who interact with the

system are put outside the system.

Purposes of use case diagram

➢Used to gather the requirements of a system.

➢Used to get an outside view of a system.

➢Identify the external and internal factors influencing the

system.

➢Show the interaction among the requirements and actors

15

Relationships shown in an use-case diagram

There can be 5 relationship types in a use case diagram.

1.Association/communication: communication between an actor

and a use case; Represented by a solid line.

2.Generalization of actor: Generalization of an actor means that

one actor can inherit the role of an other actor. The descendant

inherits all the use cases of the ancestor. The descendant have one or

more use cases that are specific to that role.

Association

Generilization

 3.Extend: a dotted line labeled <<extend>> with an arrow toward the

base case. The extending use case may add behavior to the base use

case. The base class declares “extension points”.

<<extend>>

 The extending use case is dependent on the extended (base) use

case. In the below diagram the “Calculate Bonus” use case doesn’t

make much sense without the “Deposit Funds” use case.

 The extending use case is usually optional and can be triggered

conditionally. In the diagram the extending use case is triggered only

for deposits over 10,000 or when the age is over 55.

 The extended (base) use case must be meaningful on its own. This

means it should be independent and must not rely on the behavior of

the extending use case.

4.Include Relationship Between Two Use Cases

 Include relationship show that the behaviour of the included

use case is part of the including (base) use case.

 The main reason for this is to reuse the common actions across

multiple use cases. In some situations this is done to simplify

complex behaviors.

 Few things to consider when using the <<include>>

relationship.

 The base use case is incomplete without the included use case.

 The included use case is mandatory and not optional.

Eg: Use case Diagram for a hospital management system

5.Generalization of a Use Case

For example,

•Pay Bill is a parent use case and Bill Insurance is the child use

case. (generalization)

•Both Make Appointment and Request Medication include

Check Patient Record as a subtask.(include)

•The extension point is written inside the base case

Pay bill; the extending class Defer payment adds the behavior of

this extension point. (extend)

23

Use Case Diagram for Student Management System

24

Class diagram

 A class diagram is a collection of static modeling elements,
such as classes and their relationships, connected as a graph.

 Class diagram do not show temporal information.

 Also known as object modeling.

 The main task of class diagram/object modeling is to

 Graphically show what each object will do in the problem
domain.

 Describe its structure such as class hierarchy.

 Describe the relationship between objects.

Class representation

 Each class is represented by a rectangle subdivided into three
compartments separated by horizontal lines.

 Class Name - The name of the class appears in the first partition

 Attributes-

 Attributes are shown in the second partition.

 The attribute type is shown after the colon.

 Attributes map onto member variables (data members) in code.

 Operations

 Operations are shown in the third partition.

 They are services the class provides.

 The return type of a method is shown after the colon at the end of the
method signature.

 The return type of method parameters are shown after the colon
following the parameter name.

 Operations map onto class methods in code

 Modifiers are used to indicate visibility of attributes and
operations.

 ‘+’ is used to denote Public visibility (everyone)

 ‘#’ is used to denote Protected visibility (friends and derived)

 ‘-’ is used to denote Private visibility (no one)

27

Relationships between classes

29

30

31

32

6. Realization

 In a realization relationship of UML, one entity denotes some

responsibility which is not implemented by itself and the

other entity that implements them.

 This relationship is mostly found in the case of interfaces.

33

34

35

Class diagram for an ATM system

Eg: Class diagram for library management system

INTERACTION DIAGRAM

➢ INTERACTION DIAGRAMS are used in UML to establish

communication between objects

➢ Interaction diagrams mostly focus on message passing and how

these messages make up one functionality of a system

➢The critical component in an interaction diagram is lifeline and

messages.

➢ Interaction diagrams capture the dynamic behavior of any

system

➢The details of interaction can be shown using several notations

such as sequence diagram, timing diagram, collaboration

diagram.

38

39

Purpose of an Interaction Diagram

➢ To capture the dynamic behavior of a system.

➢ To describe the message flow in the system.

➢ To describe the structural organization of the objects.

➢ To describe the interaction among objects.

➢ Interaction diagram visualizes the communication and sequence

of message passing in the system.

➢ Interaction diagram represents the ordered sequence of

interactions within a system.

➢ Interaction diagrams can be used to explain the architecture of

an object-oriented system.

40

Different types of Interaction Diagrams

1. Sequence diagram

• Purpose -To visualize the sequence of a message flow in the

system

• Shows the interaction between two lifelines

2. Collaboration diagram

• Also called as a communication diagram

• Shows how various lifelines in the system connects.

3. Timing diagram

• Focus on the instance at which a message is sent from one

object to another object.

41

42

 A lifeline represents an individual participant in a

sequence diagram

 A lifeline will usually have a rectangle containing its

object name

 Communication between objects is depicted using

messages.The messages appear in a sequential order on

the lifeline. We represent messages using arrows.

Lifelines and messages form the core of a sequence

diagram.

 In a sequence diagram, different types of messages and

operators are used

 In a sequence diagram, iteration and branching are also

used.
43

44

45

Sequence diagram for Hospital Management System

Benefits of a Sequence Diagram

 Sequence diagrams are used to explore any real

application or a system.

 Sequence diagrams are used to represent message flow

from one object to another object.

 Sequence diagrams are easier to maintain.

 Sequence diagrams are easier to generate.

 Sequence diagrams can be easily updated according to

the changes within a system.

 Sequence diagram allows reverse as well as forward

engineering.

46

Drawbacks of a sequence diagram

 Sequence diagrams can become complex when too many

lifelines are involved in the system.

 If the order of message sequence is changed, then incorrect

results are produced.

 Each sequence needs to be represented using different message

notation, which can be a little complex.

 The type of message decides the type of sequence inside the

diagram

47

48

 As per Object-Oriented Programming (OOPs), an

object entity has various attributes associated with it.

 Usually, there are multiple objects present inside an

objectoriented system where each object can be

associated with any other object inside the system.

 Collaboration Diagrams are used to explore the

architecture of objects inside the system.

 The message flow between the objects can be

represented using a collaboration diagram.

49

50

➢The above collaboration diagram represents a

student information management system. The flow

of communication in the above diagram is given by,

• A student requests a login through the login

system.

• An authentication mechanism of software checks

the request.

• If a student entry exists in the database, then the

access is allowed; otherwise, an error is returned.

51

Benefits of Collaboration Diagram

➢ It is also called as a communication diagram.

➢ It emphasizes the structural aspects of an interaction

diagram - how lifeline connects.

➢ Its syntax is similar to that of sequence diagram except that

lifeline don't have tails.

➢ Messages passed over sequencing is indicated by numbering

each message hierarchically.

➢ It allows you to focus on the elements rather than focusing

on the message flow as described in the sequence diagram.

➢ Sequence diagrams can be easily converted into a

collaboration diagram as collaboration diagrams are not very

expressive.

52

Drawbacks of a Collaboration Diagram

➢ Collaboration diagrams can become complex when too

many objects are present within the system.

➢ It is hard to explore each object inside the system.

➢ Collaboration diagrams are time consuming.

➢ The object is destroyed after the termination of a program.

➢ The state of an object changes momentarily, which makes it

difficult to keep track of every single change the occurs

within an object of a system.

53

54

➢In the above diagram, first, the software passes

through the requirements phase then the design and

later the development phase.

➢The output of the previous phase at that given

instance of time is given to the second phase as an

input

➢Thus, the timing diagram can be used to describe

SDLC (Software Development Life Cycle) in UML

55

Benefits of a Timing Diagram

➢Timing diagrams are used to represent the state of an object

at a particular instance of time.

➢ Timing diagram allows reverse as well as forward

engineering.

➢ Timing diagram can be used to keep track of every change

inside the system.

Drawbacks of a Timing Diagram

➢ Timing diagrams are difficult to understand.

➢ Timing diagrams are difficult to maintain.

56

ACTIVITY DIAGRAM

➢ACTIVITY DIAGRAM is basically a flowchart to represent the

flow from one activity to another activity.

➢The activity can be described as an operation of the system.

➢The basic purpose of activity diagrams is to capture the dynamic

behavior of the system.

➢ It is also called object-oriented flowchart.

➢Activity diagrams are not only used for visualizing the dynamic

nature of a system, but they are also used to construct the

executable system by using forward and reverse engineering

techniques.

57

Basic components of an activity diagram

➢ Action: A step in the activity wherein the users or software

perform a given task.

➢ Decision node: A conditional branch in the flow that is

represented by a diamond. It includes a single input and two or

more outputs.

➢ Control flows: Another name for the connectors that show the

flow between steps in the diagram.

➢ Start node: Symbolizes the beginning of the activity. The start

node is represented by a black circle.

➢ End node: Represents the final step in the activity. The end

node is represented by an outlined black circle.

58

Activity diagram symbols

➢ Start symbol - Represents the beginning of a process or

workflow in an activity diagram.

➢ Activity symbol - Indicates the activities that make up a

modeled process. These symbols, which include short

descriptions within the shape, are the main building blocks of

an activity diagram.

➢ Connector symbol - Shows the directional flow, or control

flow, of the activity.

59

➢ Joint symbol / Synchronization bar - Combines two concurrent

activities and re-introduces them to a flow where only one

activity occurs at a time. Represented with a thick vertical or

horizontal line.

➢ Fork symbol - Splits a single activity flow into two concurrent

activities. Symbolized with multiple arrowed lines from a join.

➢ Decision symbol - Represents a decision and always has at least

two paths branching out with condition text.

60

➢Note symbol - Allows the diagram creators or collaborators

to communicate additional messages that don't fit within the

diagram itself. Leave notes for added clarity and

specification.

➢ Send signal symbol - Indicates that a signal is being sent to a

receiving activity

➢ Receive signal symbol - Demonstrates the acceptance of an

event. After the event is received, the flow that comes from

this action is completed.

61

➢ Flow final symbol - Represents the end of a specific process

flow. This symbol shouldn’t represent the end of all flows in

an activity. The flow final symbol should be placed at the end

of a single activity flow.

➢ Condition text - Placed next to a decision marker to let you

know under what condition an activity flow should split off

in that direction

➢ End symbol - Marks the end state of an activity and

represents the completion of all flows of a process.

62

63

Activity Diagram for a Login page

64

Activity diagram for Banking System

STATE CHART DIAGRAM

➢ State chart diagram is used to capture the dynamic aspect of a

system

➢ An object goes through various states during its lifespan. The

lifespan of an object remains until the program is terminated.

The object goes from multiple states depending upon the event

that occurs within the object.

➢ Each state represents some unique information about the

object.

➢ State chart diagram visualizes the flow of execution from one

state to another state of an object.

➢ It represents the state of an object from the creation of an

object until the object is destroyed or terminated.

65

➢The primary purpose of a state chart diagram is to model

interactive systems and define each and every state of an

object.

➢ State chart diagrams are also referred to as State machines

and state diagrams.

➢ A state machine consists of states, linked by transitions. A

state is a condition of an object in which it performs some

activity or waits for an event

66

67

➢ Initial state -The initial state symbol is used to indicate the

beginning of a state machine diagram.

➢ Final state -This symbol is used to indicate the end of a state

machine diagram.

➢ Decision box - It contains a condition. Depending upon the

result of an evaluated guard condition, a new path is taken for

program execution.

➢ Transition - A transition is a change in one state into another state

which is occurred because of some event. A transition causes a

change in the state of an object.

68

State box

➢ States represent situations during the life of an object.

➢ It is denoted using a rectangle with round corners.

➢The name of a state is written inside the rounded rectangle.

➢ A state can be either active or inactive.

➢When a state is in the working mode, it is active, as soon as it

stops executing and transits into another state, the previous

state becomes inactive, and the current state becomes active.

69

Types of State

➢ Simple state

• They do not have any sub state.

➢Composite state

• These types of states can have one or more than one sub

state.

• A composite state with two or more sub states is called an

orthogonal state.

➢ Submachine state

• These states are semantically equal to the composite states

• Unlike the composite state, we can reuse the submachine

states.

70

▪ The composite state “Enrollment” is made up of various sub

states that will lead students through the enrollment process.

▪ Once the student has enrolled, they will proceed to “Being

taught” and finally to “Final exams.

71

72

Eg: State chart diagram of User Authentication Process

73

JAVA APPLET

➢ An applet is a special kind of Java program that is designed

to be transmitted over the Internet and automatically

executed by a Java-compatible web browser

➢ It runs inside the web browser and works at client side

➢ Applets are used to make the web site more dynamic and

entertaining

➢ Applets are not stand-alone programs. Instead, they run

within either a web browser or an applet viewer. JDK

provides a standard applet viewer tool called applet viewer.

➢ In general, execution of an applet does not begin at main()

method.

74

 There are two types of applets:

 These applets use the Abstract Window Toolkit (AWT) to

provide the graphic user interface (or use no GUI at all).

This style of applet has been available since Java was

first created

 The second type of applets are those based on the Swing

class JApplet. Swing applets use the Swing classes to

provide the GUI. Swing offers a richer and often easier-

to-use user interface than does the AWT

75

Applet Life Cycle

1. Born on initialization state :

 Applet enters the initialization state when it is first loaded.

 This is achieved by calling init().

 This occurs only once in the applet’s life cycle.

 At this stage, we may do the following

 Create objects needed by the applet

 Initialize variables

 Load images or fonts.

 Setup colors.

77

2. Running state :

 Applet enters this state when the system calls the start() method

 This occurs automatically after the applet is initialized(init())

 Starting can also occur if the applet is already in stopped(Idle) state.

 start() can be called more than once.

 start() is called each time an applet’s HTML document is displayed

onscreen. So, if a user leaves a web page and comes back, the applet

resumes execution at start().

3. Idle state or Stopped state :

 An applet becomes idle when it is stopped from running. We can do

so by calling stop() explicitly.

 Stopping occurs automatically when we leave the page containing the

currently running applet.

 Example : when it goes to another page.

 If the user returns to the page, we can restart them by calling start().

4. Dead or destroyed state :

 An applet is said to be dead when it is removed from memory.

 This occurs by invoking destroy().

 At this point, we should free up any resources the applet may be

using. The stop() method is always called before destroy().

 This occurs only once in the applet life cycle.

5. Display state:

 Applet moves to this state whenever it has to perform some output

operations on the screen.

 This happens immediately after the applet enters into the running

state.

 paint() is called to accomplish this task.

 The paint() method is called each time our applet’s output must be

redrawn.

 This situation can occur for several reasons. For example,

 the window in which the applet is running may be overwritten by another

window and then uncovered.

 the applet window may be minimized and then restored.

 The paint() method has one parameter of type Graphics. This

parameter describes the graphics environment in which the applet is

running.

81

Java Application vs. Applet

